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Abstract. An account is given of the non-dilatant double-shearing theory of plane flow of granular materials, and
it is shown that the theory may be formulated as a special form of hypoplasticity theory. It is shown that according
to this theory, simple shearing flows may be supported by a time-independent stress field, but that this solution is
unstable. An alternative solution in which the stress in time-dependent is also derived, and shear flow takes place
under decreasing shear stress. The strain localization theory of Rudnicki and Rice is applied in conjunction with
the double-shearing theory, and it is shown that the theory admits bifurcations in which shear bands form on planes
that coincide with the shear plane. Similarly, in pure shear, there exists an unstable solution with time-independent
stress, and a solution with time-dependent stress in which the compressive load falls as the deformation increases,
and shear bands may form at surfaces on which, according to the Coulomb criterion, the critical shear stress is
mobilized. The double-shearing theory for axially symmetric flow is summarized, and applied to compression of
a circular cylinder. Again there is an unstable constant stress solution, a time-dependent stress solution in which
the axial pressure decreases as the compression of the cylinder increases, and conical shear bands may form on
conical surfaces on which the critical shear stress is mobilized.
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1. Introduction

In this paper we explore some consequences of the non-dilalant double-shearing theory of the
mechanical behaviour of granular materials. This theory was formulated by Spencer [1, 2], and
has had some success in describing problems of flow of granular materials as, for example in
[3, 4, 5]. The formulation of constitutive equations for the mechanics of granular materials
is still a matter of debate. Many different models have been proposed, but none has found
general acceptance The literature is too extensive to be summarized here, but a brief review
up to 1982 was given in [1], and some discussions of recent relevant work have been given
by, among others, Collins [6], Harris [7] and Nemat-Nasser [8] There are many other reviews
which approach the subject from various viewpoints. One purpose of the present study is to
obtain results that allow comparison with those of other theories and with experiment.

The double-shearing theory is based on the Coulomb failure criterion, supplemented by a
kinematic constitutive assumption that the deformation mechanism is by simultaneous shear-
ing on the two families of surfaces on which the critical shear stress is mobilized. A description
of the plane strain theory follows in Section 2. The theory can be extended in various ways.
In particular, Mehrabadi and Cowin [9, 10, 11] have proposed a ‘dilatant double-shearing
theory’ in which shearing is accompanied by an expansion in the direction normal to the shear
plane. However, in this paper we restrict attention to the simpler non-dilatant theory, which
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we believe is sufficient to capture many, though not all, of the features of flows of granular
materials.

It is well known that uniform flows of many real granular materials are difficult to realize
in practice, and that they tend to become unstable. These instabilities are often manifested by
the formation of shear bands, which are narrow zones of intense shearing deformation. It has
also been pointed out by several authors (for example, Harris [12]) that the double-shearing
equations (and several other models of granular material mechanics) are linearly ill-posed
in the sense that small perturbations of solutions of the equations may grow exponentially.
Schaeffer [13] suggested that this property of the equations may be associated with shear-band
formation.

In this paper we apply the strain localization analysis formulated by Rudnicki and Rice
[14] and Rice [15] to shear-band formation in granular material using the double-shearing
theory. This analysis has been applied using various constitutive equations but not, as far as
we are aware, in conjunction with the double-shearing theory. We consider the stability of
simple shearing, pure shearing, and triaxial compression flows. It is shown that the theory
admits shear-band instabilities that are broadly in agreement with observations of these flows.

Because accounts of the formulation of the double-shearing theory are not easily accessi-
ble, we describe the plane strain theory in some detail in Section 2. The description given in
Section 2 differs a little from the formulations given in [1, 2]. The earlier formulation is also
extended by expressing the double-shearing equations in a new form that shows them to be a
special form of hypoplastic constitutive equation.

Simple shearing flow is discussed in Section 3. It is shown that there exists a time-inde-
pendent uniform stress that is compatible with a simple shearing flow, but that this solution is
linearly unstable. It is also shown that simple shearing flow can accompany a time-dependent
stress field in which the principal axes of stress rotate away from their directions in the steady
stress solution, and that shear flow the occurs under a decreasing shear stress, which also
indicates unstable behaviour. The strain localization analysis of Rudnicki and Rice [14] and
Rice [15] is applied to the plane double-shearing theory, and it is shown that shear bands may
form in surfaces on which the critical shear stress is mobilized. In the case of simple shear,
one such family of surfaces coincides with the shear planes, and so shear bands may form on
the shear planes. This is broadly in line with observation.

Pure shear is treated in a similar way in Section 4. In this case also there is a time-
independent stress solution which is shown to be linearly unstable, and a time-dependent stress
solution in which the principal stress axes rotate away from their directions in the steady-stress
solution, and compression takes place under a decreasing load. In this case the shear band
analysis predicts formation of shear bands at angles ±( 1

4π + 1
2φ) to the horizontal (where φ

is the angle of internal friction), which is also in broad agreement with observation.
In Section 5 we outline the double-shearing theory for axially symmetric deformations, and

in Section 6 apply the theory to the problem of compression of a circular cylinder (the triaxial
test of soil mechanics). Results are very similar to those of the pure shear problem. There is
a linearly unstable time-independent stress solution, and a time-dependent stress solution in
which flow occurs under decreasing axial compressive stress. The shear-band analysis admits
the formation of conical shear bands in conical surfaces whose walls have slope ±( 1

4π + 1
2φ).
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2. General theory-plane strain

Initially all quantities are referred to a fixed system of rectangular Cartesian coordinates Oxyz.
The components of the stress tensor σ are denoted as

σ =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 , (2.1)

and the components of the velocity v by (u, v,w). In the first instance we consider plane strain
in the (x, z) planes, so that v = 0, u and w are functions of x and z, and the relevant stress
components are σxx, σxz, and σzz, all of which depend only on x and z. We write

p = −1

2
(σxx + σzz) , q =

{
1

4
(σxx − σzz)

2 + σ 2
xz

} 1
2

, q ≥ 0, (2.2)

so that p and q are stress invariants that represent the mean in-plane hydrostatic pressure and
the maximum shear stress, respectively. The stress angle ψ is defined by

tan 2ψ = 2σxz
σxx − σzz

, (2.3)

and is the angle that the principal stress axis associated with the algebraically greater principal
stress makes with the x-axis (tensile stress is taken to be positive). Then the relevant stress
components can be expressed as

σxx = −p + q cos 2ψ, σzz = −p − q cos 2ψ, σxz = q sin 2ψ. (2.4)

In soil mechanics terminology, the case cos 2ψ > 0 corresponds to passive lateral pressure
and cos 2ψ < 0 corresponds to active lateral pressure.

The material is assumed to conform to the Coulomb-Mohr yield condition

q ≤ p sin φ + c cos φ (2.5)

where φ is the angle of internal friction and c is the cohesion, both of which are assumed to
be constant, and (2.5) holds as an equality whenever the material is undergoing deformation.
In physical terms, (2.5) states that flow can only take place when the maximum shear stress q
reaches the critical value p sinφ + c cosφ. The argument leading to (2.5) (which essentially
was stated by Coulomb [16]) is as follows. Consider an arbitrary curve in the (x, z) plane
with slope tan γ and therefore normal unit vector (− sin γ, cosγ ). Then for a given stress,
the normal compressive component σ and the tangential component τ of the traction on this
surface are

σ = σxx sin2 γ − 2σxz sin γ cos γ + σzz cos2 γ,

τ = −(σxx − σzz) sin γ cos γ + σxz(cos2 γ − sin2 γ ),
(2.6)

which, using (2.4), can be expressed as

σ = −p + q cos 2(γ − ψ), τ = q sin 2(γ − ψ). (2.7)

The Coulomb assumption is that |τ | ≤ σ tanφ + c on every surface, and that flow can only
occur when |τ | = σ tanφ + c on some surface. From (2.7)
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|τ | − σ tanφ = −p tanφ + q secφ sin{2 |γ − ψ | − φ} (2.8)

and for a given stress this takes its maximum value when the surface is such that γ = ψ ±
( 1

2φ + 1
4π). It follows that the shear traction is critical when q = p sinφ + c cosφ, and that

this critical traction is mobilized on the surfaces

dz

dx
= tan

(
ψ ± (

1

4
π + 1

2
φ)

)
. (2.9)

This argument uses only standard properties of the stress tensor, and is quite independent of
any considerations of equilibrium or momentum.

The equations of motion are, in plane strain and neglecting body forces

∂σxx

∂x
+ ∂σxz

∂z
= ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
,
∂σxz

∂x
+ ∂σzz

∂z
= ρ

(
+∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
.

(2.10)

In quasi-static flows, when inertia terms are neglected, the Coulomb-Mohr condition (2.5) (as
an equality) and the equilibrium equations (i.e. (2.10) with the right-hand sides set to zero) can
be expressed as a pair of first-order partial differential equations for q and ψ; these equations
are hyperbolic with (2.9) as their characteristics. However, this property does not obtain in the
dynamic case.

To complete the material description it is necessary to specify a ‘flow rule’ that relates
the stress to the deformation. Whereas (2.5) is generally accepted as a reasonable constitutive
assumption for the description of stress in dry granular materials, the formulation of an ap-
propriate flow rule is still controversial. Many proposals have been made, some of which are
compared in, for example, [2], [6] and [7]. In this paper we adopt the ‘non-dilatant double-
shearing’ model [1, 2] which has a number of attractive features. Because the formulation of
the double-shearing theory is not now easily accessible, and the basis of the theory has been
misunderstood in the literature, we give an outline of the formulation that is slightly different
from the formulations given in [1, 2].

The essential constitutive assumption is an extension of Coulomb’s argument, leading to
(2.5), that flow is possible when the critical shear stress is mobilized on the surfaces (2.9). This
is extended by proposing that when deformation occurs it does so by simultaneous shears on
the surfaces (2.9) in the directions tangential to these curves. By way of introduction and for
motivation we first consider a body in a uniform state of stress that satisfies the Coulomb
condition (2.5) as an equality, and suppose that the material undergoes a uniform single
shear in the (x, z) plane on one of the families of surfaces defined by the curves (2.6); for
definiteness say on the curves

dz

dx
= tan (ψ − 1

4
π − 1

2
φ). (2.11)

Since the stress is a uniform stress, ψ is constant and the curves (2.11) are parallel straight
lines. A uniform shear flow on these lines corresponds to the velocity field

u = a[(x − x0) cos(2ψ − φ)+ (z− z0){1 + sin(2ψ − φ)}],
w = a[−(x − x0){1 − sin(2ψ − φ)} − (z − z0) cos(2ψ − φ)]. (2.12)

In this motion the direction of the velocity is parallel to the lines (2.11), and the magnitude of
the velocity at (x, z) is proportional to the normal distance from (x, z) to the line that passes
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through (x0, z0). The constant 2a is the magnitude of the shear strain-rate. Similarly, for a
single shear flow of magnitude 2b on the surfaces defined by the lines dz/dx = tan (ψ +
1
4π + 1

2φ), the velocity field is

u = b[−(x − x0) cos(2ψ + φ)+ (z − z0){1 − sin(2ψ + φ)}],
w = b[−(x − x0){1 + sin(2ψ + φ)} + (z− z0) cos(2ψ + φ)]. (2.13)

Unless boundary conditions dictate otherwise, there is no reason to give precedence to either
family of shear surfaces, so the general homogeneous shearing flow is a superposition of the
velocity fields (2.12) and (2.13).

If the stress is not uniform, so that ψ depends on x and z, then (2.12) and (2.13) are no
longer valid, but we may still write, for shears on the critical lines (2.11) in the neighbourhood
of (x0, z0)

du = a[dx cos(2ψ − φ)+ dz{1 + sin(2ψ − φ)}],
dw = a[−dx{1 − sin(2ψ − φ)} − dz cos(2ψ − φ)] (2.14)

and for shears on the lines dz/dx = tan (ψ + 1
4π + 1

2φ)

du = b[−dx cos(2ψ + φ)+ dz{1 − sin(2ψ + φ)}],
dw = b[−dx{1 + sin(2ψ + φ)} + dz cos(2ψ + φ)]. (2.15)

In the general case in which ψ depends on x and z, a single shearing deformation on one of the
families (2.9) is not compatible with an isochoric deformation. The exceptions are when the
critical curves are parallel straight lines or concentric circles. In all other cases, the velocity
gradients implied by (2.14) or (2.15) do not satisfy the compatibility conditions

∂

∂z

(
∂u

∂x

)
= ∂

∂x

(
∂u

∂z

)
,

∂

∂z

(
∂w

∂x

)
= ∂

∂x

(
∂w

∂z

)
. (2.16)

However, it is possible for the double shearing deformations obtained by superposing (2.14)
and (2.15) to be realized in an isochoric motion. For the superposed deformation, (2.14) and
(2.15) give

∂u

∂x
= a cos (2ψ − φ)− b cos (2ψ + φ),

∂u

∂z
= a{1 + sin (2ψ − φ)} + b{1 − sin (2ψ + φ)},

∂w

∂x
= −a{1 − sin (2ψ − φ)} − b{1 + sin (2ψ + φ)},

∂w

∂z
= −a cos (2ψ − φ)+ b cos (2ψ + φ).

(2.17)

By eliminating a and b from (2.17) we can show that

∂u

∂x
+ ∂w

∂z
= 0, (2.18)(

∂u

∂z
+ ∂w

∂x

)
cos 2ψ −

(
∂u

∂x
− ∂w

∂z

)
sin 2ψ + sinφ

(
∂u

∂z
− ∂w

∂x

)
= 0. (2.19)
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Equation (2.18) is the condition that the flow is isochoric, and (2.19) expresses the con-
dition that the flow consists of simultaneous shears on the critical surfaces. However, (2.19)
is not complete, and is not acceptable as a constitutive equation because it does not satisfy
the requirement of invariance under superposed rigid body rotations. The reason is that the
directions of the critical curves are given by the angle ψ which describes the directions of the
principal stress axes, and in general this angle varies in space and in time.. Hence the critical
curves are not material curves, but are in motion relative to the material. Therefore, in the
neighbourhood of a generic particle at (x0, z0) the deformation should be referred to a frame
of reference in which the direction of the principal stress axes are fixed. Equivalently, we may
refer the motion to the fixed (x, z) axes but replace the (clockwise) material spin 1

2

(
∂u
∂z

− ∂w
∂x

)
by

·
ψ + 1

2

(
∂u
∂z

− ∂w
∂x

)
, where the superposed dot represents a material time derivative, so that

·
ψ is the (anticlockwise) spin of the principal axes of stress through the particle at (x0, z0).

Hence (2.19) is replaced by(
∂u

∂z
+ ∂w

∂x

)
cos 2ψ −

(
∂u

∂x
− ∂w

∂z

)
sin 2ψ + sinφ

(
∂u

∂z
− ∂w

∂x
+ 2�

)
= 0, (2.20)

where

� = ·
ψ = ∂ψ

∂t
+ u

∂ψ

∂x
+ w

∂ψ

∂z
(2.21)

is the spin of the principal stress axes through a generic particle. With this addition (2.20)
has the required invariance property and is a possible constitutive equation for an isotropic
material. Because � appears in the equations, the formulation involves the stress-rate as well
as the stress and the velocity gradients. Alternative derivations of (2.18) and (2.20) were
given in [2]. If appropriate stress and velocity boundary conditions are established the above
stress and velocity equations represent a complete set of equations for the description of plane
granular flow of a granular material.

It is emphasized that the argument leading to (2.18) and (2.20) is purely a kinematic
one, based on a single constitutive assumption, and is quite independent of eqiulibrium or
momentum considerations. It can be shown if ψ is regarded as a known quantity, then (2.18)
and (2.20) form a pair of hyperbolic equations for u and w whose characteristics coincide
with (2.9), which are also the characteristics of the stress equations in the case of quasi-static
deformations. This is a consequence of the constitutive assumption of the double-shearing
deformation mechanism, and has not been introduced as a postulate. This coincidence of
characteristics does not apply in the dynamic situation (in fact the dynamic equations are
not hyperbolic) but this does not at all invalidate the purely kinematic constitutive assumption
that is represented mathematically by (2.20).

For some of the analysis of this paper, it is useful to cast the governing equations in an
alternative form. From (2.2) and (2.3) it follows that

� = ·
ψ = (σxx − σzz)

·
σxz − σxz(

·
σxx − ·

σ zz)

4q2
, (2.22)

where superposed dots denote material time derivatives. Also, (2.20) may be written as

(σxx − σzz)dxz − σxz(dxx − dzz)+ 2q(ωxz +�) sinφ = 0 (2.23)

where
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dxx = ∂u

∂x
, dzz = ∂w

∂z
, dxz = 1

2

(
∂u

∂z
+ ∂w

∂x

)
, ωxz = 1

2

(
∂u

∂z
− ∂w

∂x

)
. (2.24)

Hence, by inserting (2.22) in (2.23)

(σxx − σzz)(2qdxz + ·
σxz sin φ)− σxz{2q(dxx − dzz)+ (

·
σxx − ·

σzz) sinφ} + 4q2ωxz sinφ = 0
(2.25)

or, using (2.2)

(σxx − σzz)[2qdxz + { ·
σxz + (σxx − σzz)ωxz} sinφ]

−σxz[2q(dxx − dzz)+ {( ·
σxx − ·

σzz)− 4σxzωxz} sinφ] = 0,
(2.26)

We may rearrange this equation in the form

2q(dxx − dzz)+ sinφ{( ·
σxx − ·

σzz)− 4σxzωxz}
2q(σxx − σzz)

= 2qdxz + sinφ{ ·
σxz + (σxx − σzz)ωxz}
2qσxz

.

(2.27)

By setting each side of (2.27) equal to a parameter
·
λ, and using the isochoric condition in the

form dxx + dzz = 0, it follows that the rate-of-deformation can be expressed as

dxx = −dzz = 1

2

·
λ(σxx − σzz)− 1

4q
sinφ{( ·

σxx − ·
σzz)− 4σxzωxz},

dxz = ·
λσxz − 1

2q
sinφ{ ·

σxz + (σxx − σzz)ωxz}.
(2.28)

The derivative

∇
σ =

 ∇
σxx

∇
σxz

∇
σxz

∇
σzz

 =
 ·

σxx − 2σxzωxz
·
σxz + (σxx − σzz)ωxz

·
σxz + (σxx − σzz)ωxz

·
σzz + 2σxzωxz

 (2.29)

can be identified as the ‘Jaumann’ or ‘co-rotational’ time derivative of σ and is an objective
quantity independent of superposed rigid body rotations. Hence (2.28) can be expressed as

dxx = −dzz = 1

2

·
λ(σxx − σzz)− 1

4q
sinφ (

∇
σ xx − ∇

σ zz), dxz = ·
λσxz − 1

2q
sin φ

∇
σxz, (2.30)

which is a concise and convenient properly invariant formulation of the double-shearing equa-
tions that is consistent with material isotropy. This formulation and some extensions of it were
given in [2]. An equation similar in form to (2.30) (but including elastic deformation) was
proposed by Rudnicki and Rice [14] as a model for fissured rock masses, but their model is a
hardening model and the interpretation differs from that of the double-shearing model.

Alternatively, using (2.4), we can express (2.29) as

∇
σ =

 ∇
σxx

∇
σxz

∇
σxz

∇
σzz

 =
 ·
σxx

·
σxz

·
σ xz

·
σ zz

 + 2qωxz

[ − sin 2ψ cos 2ψ

cos 2ψ sin 2ψ

]
(2.31)

and (2.30) as

dxx = −dzz = ·
λq cos 2ψ − 1

4q
sin φ (

∇
σxx − ∇

σzz), dxz = ·
λq sin 2ψ − 1

2q
sinφ

∇
σ xz. (2.32)



62 A.J.M. Spencer

It is also useful to invert (2.30). We note the relation, that follows from (2.2) and (2.31)

(σxx − σzz)(
∇
σ xx − ∇

σzz)+ 4
∇
σ xzσxz = 4

·
qq. (2.33)

Hence it follows from (2.30) that

q{(dxx − dzz) cos 2ψ + 2dxz sin 2ψ} = 2
·
λq2 − ·

q sinφ. (2.34)

The left-hand side of (2.34) represents the rate of working of the stress in the velocity field. It
follows that

·
λ = {(dxx − dzz) cos 2ψ + 2dxz sin 2ψ}

2q
+

·
q sinφ

2q2
(2.35)

and therefore (2.30) can be rearranged in the form

(
∇
σxx − ∇

σzz) = −2q(dxx − dzz)

sin φ
+

{
{(dxx − dzz) cos 2ψ + 2dxz sin 2ψ}

q sin φ
+

·
q

q

}
(σxx − σzz),

∇
σ xz = −2qdxz

sinφ
+

{
{(dxx − dzz) cos 2ψ + 2dxz sin 2ψ}

q sinφ
+

·
q

q

}
σxz.

(2.36)

We note also that

∇
σxx = 1

2
(
∇
σxx − ∇

σzz)− ·
p,

∇
σzz = −1

2
(
∇
σxx − ∇

σzz)− ·
p. (2.37)

Equation (2.36) may be regarded as a form of hypoplastic constitutive equation. Hypoplas-

tic equations are constitutive equations of the general form (in direct notation)
∇
σ = F(σ,D),

where F is an isotropic tensor function of σ and D that is homogeneous of degree one in the
rate-of-deformation D. Equation (2.36) is clearly a special case of this relation. The inter-
pretation of the double-shearing theory as a hypoplastic constitutive equation was pointed
out by Mehrabadi and Cowin [11]. Hypoplastic theories of granular materials have been
studied extensively by Kolymbas, Wu and collaborators (see, for example [17] which contains
references to earlier developments).

It has been pointed out by several authors (for example Harris [12]) that the equations
of the double-shearing theory (and of several other theories for the mechanics of granular
materials) are linearly ill-posed with respect to initial conditions. Schaeffer [13] has suggested
connections between ill-posedness and the formation of shear bands, which are commonly
observed in real granular material, but this is still a matter for debate.

3. Simple shear flow

The problem of steady simple shear flow of a layer of granular material was analyzed by
Spencer [19]. It was shown there that there exists a solution in which the stress is constant,
but that this solution is unstable and there is an alternative solution in which the stress is time-
dependent. Details of the solution were obtained under the boundary condition that the lateral
confining pressure is constant. For that case it was shown that in the time-dependent solution
the shear stress required to support the deformation increases initially, but then passes through
a maximum and then decreases as the shear strain increases. In this section we consider the
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same deformation but with a different boundary condition, namely we suppose that a constant
normal pressure P acts on the shear planes. We also extend the solution to include inertia
terms.

Thus it is supposed that the material is subject to a pressure P in the z direction (as, for
example, in a layer of granular material with a uniform rigid overburden) so that σzz = −P
uniformly. Hence from (2.4)

P = p + q cos 2ψ (3.1)

and so, from (2.5)

p = P − c cos φ cos 2ψ

1 + sinφ cos 2ψ
, q = P sin φ + c cos φ

1 + sinφ cos 2ψ
, (3.2)

and from (2.4)

σxx = −P(1 − sin φ cos 2ψ)+ 2c cosφ cos 2ψ

1 + sinφ cos 2ψ
,

σzz = −P, σxz = (P sinφ + c cosφ) sin 2ψ

1 + sin φ cos 2ψ
.

(3.3)

We consider the simple shearing deformation

u = αz, w = 0, (3.4)

where α is a positive constant. It is assumed that the stress, and hence ψ , is independent of
position, but may depend on time t . Then the isochoric condition (2.18) is satisfied, and the
double-shearing condition (2.20) becomes

α(cos 2ψ + sin φ)+ 2
dψ

dt
sinφ = 0. (3.5)

3.1. STEADY STRESS SOLUTION

Equation (3.5) clearly has the solution

cos 2ψ = − sinφ, (3.6)

so that

ψ = ψS = 1

4
π + 1

2
φ (3.7)

and the positive sign for ψs has been chosen to ensure that the plastic work-rate is positive.
Correspondingly, the stress is

σxx = −P(1 + sin2 φ)

cos2 φ
− 2c tanφ, σzz − −P, σxz = P tanφ + c. (3.8)

Thus in this solution the stress is independent of t and the material undergoes a steady shearing
flow with a constant shear stress.

To investigate the linear stability of this time-independent stress solution we introduce a
small perturbation
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ψ = ψS + εψ1, u = αy + εu1, v = εv1, (3.9)

where ε is a small parameter. We suppose that the perturbations ψ1, u1, v1 depend only on
t and are independent of position (this is not the most general case but is sufficient for our
purpose). The substitution of (3.9) in (3.5) gives, to first order in ε,

dψ1

dt
− αψ1 cot φ = 0 (3.10)

and hence

ψ1 = A exp(αt cot φ), (3.11)

where A is a constant. Therefore, since α is positive, small perturbations of the form (3.9)
of the steady-stress solution grow exponentially, and the time-independent stress solution is
linearly unstable.

We note in passing that for constant α, the solution (3.4), (3.6) and (3.8) also satisfies the
dynamic equations, with inertia terms included. It can be shown by a small extension of the
above argument that the time-independent stress solution is also unstable, in a similar way,
when regarded as a solution of the dynamic equations. This is consistent with several exact
solutions of the dynamic equations obtained by Hill and Spencer [22] which showed in all the
cases considered that an increasing shear strain is accompanied by a decreasing shear stress.
It is also consistent with observations that dynamic shear deformations in earthquakes and
avalanches are often larger than is suggested by assuming a steady shear stress solution; this
effect is observed even in fluid-free environments such as the moon.

3.2. TIME-DEPENDENT STRESS SOLUTION

The above analysis shows that there is a bifurcation from the time-independent stress solution
at ψ = ψS. To analyze the post-bifurcation behaviour we return to (3.5). It was shown in [19]
that (3.5) has the solution, subject to the initial condition ψ = ψ0 at t = 0,

tanψ

tanψS
= tanψS tanh( 1

2αt cotφ)− tanψ0

tanψ0 tanh( 1
2αt cotφ)− tanψS

. (3.12)

This reduces to (3.7) if ψ0 = ψS.However, if ψ0 is not precisely equal to ψS, then ψ increases
with t if ψ0 > ψS and decreases with t if ψ0 < ψS. Thus, in either case the principal axes of
stress rotate away from the directions defined by the time-independent solution (3.7). In the
limit t → ∞ (3.12) gives tanψ → − tanψS, but negative value of ψ are not relevant because
they imply negative plastic work rate.

From (3.3) and (3.7), the shear stress σxz can be expressed as

σxz = 2(P sinφ + c cos φ) tanψ

(1 − sin φ)(tan2 ψS + tan2 ψ)
, (3.13)

from which it is easily shown that σxz has its maximum value when ψ = ψS and decreases
monotonically as ψ increases or decreases from this value. This is in contrast to the behaviour
described in [19] for the case in which shear takes place under constant confining stress σxx.
In that case σxz initially increases as ψ decreases from the value ψS, then reaches a maximum
value atψ = 1

4π− 1
2φ at a finite shear strain whose value depends onψ0, and finally decreases,

eventually to zero (also at a finite shear strain) as ψ decrease further. Thus it seems that details
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of the behaviour may be sensitive to the precise conditions under which the simple shear flow
occurs, but that the flow will always become unstable at some stage.

3.3. SHEAR-BAND FORMATION

Instability of homogeneous deformations is often interpreted as leading to the formation of
shear bands, or strain localization. We follow the approach formulated by Rudnicki and Rice
[14] and Rice [15], in which strain localization is regarded as an instability in an initially
uniform stress and velocity field. References to earlier literature are given in [14] and [15].
There is a very extensive subsequent literature on the subject – the main difference between
different investigations is in the constitutive equation adopted. Some representative references
are [17,18,21,22]. As far as we are aware shear band formation has not been studied explicitly
in relation to the double-shearing theory, although related theories such as the yield vertex
model of Rudnicki and Rice [14] and various hypoplastic models (for example [17,18]) have
been used in this context.

In this section we are only concerned with plane strain deformations. Suppose that initially
a body deforms with uniform velocity and stress fields v0 and σ0.We seek to determine if there
can exist an additional superposed field, with velocity v1 and stress σ1, confined to a narrow
band with the body. It is assumed that the velocity is continuous across the boundary surfaces
of the band, but that the velocity gradients may be discontinuous. It follows that within the
band the superposed velocity gradients are of the form

∂u

∂x

∂u

∂z
∂w

∂x

∂w

∂z

 =
[
g1n1 g1n2

g2n1 g2n2

]
, (3.14)

where

n = (n1, n2) and g = (g1, g2) (3.15)

are, respectively, the unit normal to the shear band and an arbitrary vector. It follows from the
incompressibility condition that

g1n1 + g2n2 = 0. (3.16)

It is also assumed that equilibrium is maintained during the formation of the shear band. The
conditions for continuing equilibrium across the shear band is

∣∣∣ ·
σ xx

∣∣∣ ∣∣∣ ·
σ xz

∣∣∣∣∣∣ ·
σxz

∣∣∣ ∣∣∣ ·
σzz

∣∣∣
 [

n1

n2

]
=

[
0

0

]
, (3.17)

where
∣∣∣ ·
σ

∣∣∣ denotes the jump across the shear band. From (2.29) it follows that
∣∣∣∇
σ xx + 2σxzωxz

∣∣∣ ∣∣∣∇
σxz − (σxx − σzz)ωxz

∣∣∣∣∣∣∇
σ xz − (σxx − σzz)ωxz

∣∣∣ ∣∣∣∇
σzz − 2σxzωxz

∣∣∣
 [

n1

n2

]
=

[
0

0

]
. (3.18)

From (3.14) we have
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(dxx, dzz, dxz) =
(
g1n1, g2n2,

1

2
(g1n2 + g2n1)

)
, ωxz = 1

2
(g1n2 − g2n1) (3.19)

and from (2.37) and (3.18)

n1{1

2
(
∇
σxx − ∇

σ zz)+ 2σxzωxz} + n2{∇
σxz − (σxx − σzz)ωxz} − n1

·
p = 0,

n1{∇
σxz − (σxx − σzz)ωxz} − n2{1

2
(
∇
σxx − ∇

σ zz)+ 2σxzωxz} − n2
·
p = 0.

(3.20)

Hence there follows, since n is a unit vector,

1

2
(
∇
σxx − ∇

σ zz)+ 2σxzωxz − (n2
1 − n2

2)
·
p = 0,

∇
σxz − (σxx − σzz)ωxz} − 2n1n2

·
p = 0.

(3.21)

By substituting from (2.36) in (3.21), using (2.4) and noting that
·
q = ·

p sinφ, we may
deduce that

sin 2ψ{−(dxx − dzz) sin 2ψ + 2dxz cos 2ψ − 2ωxz sinφ} +
·
q

q
{sinφ cos 2ψ − (n2

1 − n2
2)} = 0,

cos 2ψ{−(dxx − dzz) sin 2ψ + 2dxz cos 2ψ − 2ωxz sinφ} −
·
q

q
{sinφ sin 2ψ − 2n1n2} = 0.

(3.22)

In order for bifurcation to be possible, (3.16), (3.19) and (3.22) must admit non-trivial solu-
tions for g1, g2 and

·
q. From (3.22) there follows

·
q

q
{sinφ − (n2

1 − n2
2) cos 2ψ − 2n1n2 sin 2ψ} = 0, (3.23)

and hence either
·
q = 0, or

sinφ − (n2
1 − n2

2) cos 2ψ − 2n1n2 sin 2ψ = 0. (3.24)

If
·
q = 0, then from (3.22)

−(dxx − dzz) sin 2ψ + 2dxz cos 2ψ − 2ωxz sinφ = 0. (3.25)

From (3.16) and (3.19), this implies that

−2n1n2 sin 2ψ − (n2
1 − n2

2) cos 2ψ + sinφ = 0, (3.26)

which is the same as (3.24). We define the angle δ as

tan δ = n2

n1
(3.27)

so that δ is the angle the normal to the shear band makes with the x-axis. Then (3.24) and
(3.26) can be expressed as

− cos 2(ψ − δ)+ sinφ = 0 (3.28)
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from which it follows that

δ = ψ ± (
1

4
π − 1

2
φ). (3.29)

Thus in either case
·
q = 0 or

·
q �= 0, the normal to the shear band makes an angle ±( 1

4π− 1
2φ)

with the major principal stress axis. This means that the shear band is inclined at ±( 1
4π + 1

2φ)

to the major principal stress axis. Thus, from (2.9), a shear band is necessarily a line on which
the critical shear stress is mobilized.

If
·
q �= 0, then from (3.22)

sin 2ψ{−(dxx − dzz) sin 2ψ + 2dxz cos 2ψ − 2ωxz sinφ}{sinφ sin 2ψ − 2n1n2}
+ cos 2ψ{−(dxx − dzz) sin 2ψ + 2dxz cos 2ψ − 2ωxz sinφ}{sinφ cos 2ψ − (n2

1 − n2
2)} = 0

(3.30)

which simplifies to

{−(dxx −dzz)sin2ψ+2dxz cos 2ψ−2ωxz sinφ}{sinφ− (n2
1 −n2

2) cos 2ψ−2n1n2 sin 2ψ} = 0.
(3.31)

Both factors of (3.31) again yield (3.29), and so this case gives no additional information.
In the case of simple shear as considered in this section, in the steady stress solution we

have

ψ = ψS = 1

4
π + 1

2
φ,

and hence δ = 1
2π or δ = φ. Therefore, any shear band is either parallel to the shear planes

z = const or the normal to shear band makes the angle φ with the shear planes. Many
experimental studies of shear bands in simple shear (for example [23]) show shear bands
approximately parallel to the shear planes.

Dilatancy probably plays a part in shear-band formation in real granular materials. For
simplicity, we have not incorporated dilatant behaviour in this analysis, but it should be
straightforward to extend the analysis to, for example, the dilatant double-shearing theory
proposed by Mehrabadi and Cowin [9, 10].

4. Pure shear

A pure shearing deformation is the plane deformation defined by the velocity field

u = ex, w = −ez, (4.1)

where e is a constant which for definiteness (and without loss of generality) is taken to be
positive. This field trivially satisfies the condition (2.18) for the deformation to be isochoric.
The double-shearing condition (2.20) reduces to

−e sin 2ψ + sinφ
dψ

dt
= 0. (4.2)

4.1. TIME-INDEPENDENT STRESS SOLUTION

With the equilibrium equations (or equations of motion when e is constant), (4.2) has the
solution
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ψ = 0, p = 1

2
(X + Z), q = 1

2
(Z −X), (4.3)

which corresponds to the constant stress

σxx = −X, σzz = −Z, σxz = 0. (4.4)

The Coulomb yield condition (2.5) is satisfied as an equality provided that

Z = X(1 + sinφ)+ 2c cosφ

1 − sin φ
. (4.5)

Hence (4.1)-(4.5) determine an exact time-independent stress solution.
To examine the linear stability of this solution, we introduce a perturbation from the time-

independent solution ψ = 0 by setting ψ = εψ1 in (4.2) and retaining only terms linear in ε.
This gives

dψ1

dt
= 2eψ1cosec φ (4.6)

which has the solution

ψ1 = ψ0 exp(2et cosecφ), (4.7)

where ψ = ψ0 at t = 0, Hence in this case also, any variation from the initial value ψ = 0
(that is, ifψ0 has any value other than zero) results in an exponentially growing deviation from
the time-independent solution (4.3), and so the time-independent pure shear solution is also
unstable.

4.2. TIME-DEPENDENT STRESS SOLUTION

When ψ0 �= 0, (4.2) can be integrated to give the time-dependent stress solution

tanψ = tanψ0 exp(2et cosecφ). (4.8)

Thus in pure shear also, unless ψ0 = 0, the principal axes rotate away from the directions they
assume in the time-independent solution, and ψ → ± 1

2π (according to whether ψ0 is positive
or negative), as t → ∞. In practice, for pure shear of a finite body, it might be possible to
stabilize the body by applying suitable tractions at the surface. For example, if the body is
bounded by perfectly smooth surfaces at x = ±a, then this enforces σxz = 0 at x = ±a,
which is incompatible with (4.8) unless ψ0 = 0.

For a fixed lateral pressure X, the vertical compressive pressure Z(t) = −σzz is given as

Z(t) = 2(X sin φ + c)

1 − sinφ cos 2ψ
= 2(X sinφ + c)(1 + tan2 ψ)

(1 − sinφ)+ (1 + sin φ) tan2 ψ
. (4.9)

Hence Z(t) is maximum at ψ = 0 and decreases as ψ either increases or decreases, con-
firming that the motion is unstable if the σzz stress is maintained. However, in contrast to the
simple shear case, Z(t) remains finite and bounded, and

Z(t) → 2(X sin φ + c)

1 + sin φ
as t → ±∞. (4.10)
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If the body is finite and surface forces (rather than tractions) are prescribed, then geometrical
changes may also influence the stability and instability of the deformation.

4.3. SHEAR-BAND FORMATION

The shear-band analysis presented in Section 3.3 applies generally for plane strain deforma-
tions and can equally be applied to the pure shear problem. Just as in that section the time-
independent stress solution may bifurcate and a shear band may form whose normal direction
is defined by the angle δ given by (3.29). In the case of pure shear, in the time-independent
solution we have ψ = 0, so that

δ = ±(1

4
π − 1

2
φ) (4.11)

and therefore the shear bands are inclined at ±( 1
4π + 1

2φ) to the major principal stress direc-
tion. This is in good agreement with experimental observation. Shear bands at angles close to
±( 1

4π + 1
2φ) are frequently observed in biaxial compression tests of granular materials (see,

for example [24]).

5. Axially symmetric stress and deformation

Now consider that the stress and deformation fields are axially symmetric. For this case we
refer vector and tensor quantities to cylindrical polar coordinates (r, θ, z), with the z axis as
the axis of symmetry. In axial symmetry, stress and velocity components are independent of
the polar angle θ. In (r, θ, z) coordinates, components of the stress tensor σ are denoted as

σ =
 σrr σrθ σrz
σrθ σθθ σθz
σrz σθz σzz

 , (5.1)

and in axial symmetry σrθ = 0 and σθz = 0. We consider only quasi-static deformations with
no body forces, so that the stress satisfies the equilibrium equations which reduce to

∂σrr

∂r
+ ∂σrz

∂z
+ σrr − σθθ

r
= 0,

∂σrz

∂r
+ ∂σzz

∂z
+ σrz

r
= 0. (5.2)

We adopt the Coulomb-Mohr criterion in the form

σI − σIII ≤ 2c cos φ − (σI + σIII ) sinφ, (5.3)

where σI , σII , σIII are principal components of stress, ordered so that σI ≥ σII ≥ σIII . In
axial symmetry σθθ is always one of the principal stress components. Various possibilities
arise, depending on whether or not the principal stress components are distinct and which of
σI , σII or σIII coincides with σθθ . The various stress regimes were classified by Cox, Eason
and Hopkins [25], and Spencer [2,26] also gives an account of them. It seems that particular
significance is attached to the so-called ‘Haar-von Karman’ regime in which σθθ is equal to
one of the principal stress components associated with a principal direction in the (r, z) plane.
The case of interest here is that in which

σI = σθθ > σIII (5.4)

and, when the material is undergoing flow
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σI (1 + sinφ) = σIII (1 − sinφ)+ 2c cos φ. (5.5)

In this case the stress can be expressed as

σrr = −p + q cos 2ψ̃, σzz = −p − q cos 2ψ̃, σrz = q sin 2ψ̃, σθθ = −p + q, (5.6)

where

p = −1

2
(σI + σIII ) = −1

2
(σrr + σzz) ,

q = 1

2
(σI − σIII ) =

{
1

4
(σrr − σzz)

2 + σ 2
rz

} 1
2

, tan 2ψ̃ = 2σrz
σrr − σzz

,

(5.7)

so that ψ̃ represents the angle that the algebraically greater principal stress direction in the
(r, z) planes makes with the r-direction, and the Coulomb -Mohr yield condition takes the
form

q = p sinφ + c sinφ, (5.8)

which, of course, is formally the same as the corresponding condition (2.5) in the plane strain
case. The derivation of (5.8) is similar to the derivation of (2.5), and just as in the plane strain
case it can be shown that the critical stress is mobilized on the surfaces

dz

dr
= tan

(
ψ̃ ± (

1

4
π + 1

2
φ)

)
. (5.9)

In the quasi-static case, (5.2), (5.6) and (5.8) can be reduced to two first-order partial differ-
ential equations for q and ψ̃ : these equations are hyperbolic, with characteristics defined by
(5.9). In the dynamic case acceleration terms must be included and the stress solution does
not uncouple from the velocity field.

When σθθ = σI , and (5.5) is satisfied, the critical shear stress at a generic point (r0, z0) is
mobilized on all surfaces whose normals make angles 1

4π+ 1
2φ with the principal stress direc-

tion associated with the principal stress σIII . The unit vector that characterizes this direction
is denoted by e3. Following arguments similar to those used in Section 2, it is assumed that
the flow is a superposition of shear flows on all of these possible shear surfaces. In addition,
since the other two principal directions are not uniquely defined, an arbitrary spin about the e3

direction may also be superposed. Details of the development were given in [26]. The result
is that the velocity field is governed by the equations

∂vr

∂r
+ vr

r
+ ∂vz

∂z
= 0, (5.10)

(
∂vr

∂z
+ ∂vz

∂r

)
cos 2ψ̃ −

(
∂vr

∂r
− ∂vz

∂z

)
sin 2ψ̃ + sinφ

(
∂vr

∂z
− ∂vz

∂r
+ 2�̃

)
= 0, (5.11)

where vr, vz denote components of velocity in the (r, z) plane, and

�̃ =
·
ψ̃ = ∂ψ̃

∂t
+ vr

∂ψ̃

∂r
+ vz

∂ψ̃

∂z
(5.12)
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is the spin of the principal axes of stress through a generic particle. The similarity between
(5.10–5.12) on the one hand and (2.18), (2.20) and (2.21) on the other is evident. Equation
(5.10) states that the flow is isochoric, and (5.11) is of exactly the same form as (2.20) and
expresses the double shearing (or, more accurately, multi-shearing) deformation mechanism
in axially symmetric deformations.

By arguments that directly parallel those of Section 2, we deduce from (5.11) that

drr − dzz = ·
λ(σrr − σzz)− 1

2q
sin φ{( ·

σrr − ·
σ zz)− 4σrzωrz},

drz = ·
λσrz − 1

2q
sinφ{ ·

σ rz + (σrr − σzz)ωrz},
(5.13)

where

(drr, dθθ , dzz, 2drz) =
(
∂vr

∂r
,
vr

r
,
∂vz

∂z
,
∂vr

∂z
+ ∂vz

∂r

)
, 2ωrz = −2ωzr = ∂vr

∂z
− ∂vz

∂r
. (5.14)

Furthermore, the Jaumann derivatives of σrr, σzz, and σrz are

∇
σ rr = ·

σ rr − 2ωrzσrz,
∇
σzz = ·

σzz + 2ωrzσrz,
∇
σ rz = ·

σ rz + ωrz(σrr − σzz), (5.15)

and therefore (5.13) can be written as

drr − dzz = ·
λ(σrr − σzz)− 1

2q
sinφ (

∇
σ rr − ∇

σzz), drz = ·
λσrz − 1

2q
sinφ

∇
σ rz. (5.16)

It follows that

(drr − dzz)(σrr − σzz)+ 4drzσrz = 4
·
λq2 − 2q

·
q sinφ (5.17)

and hence

·
λ = (drr − dzz)(σrr − σzz)+ 4drzσrz

4q2
+

·
q sinφ

2q2
. (5.18)

We now have, from (5.16) and (5.18)

∇
σ rr =

{
(drr − dzz)(σrr − σzz)+ 4drzσrz

4q2 sinφ
+

·
q

2q

}
(σrr − σzz)− q

sin φ
(drr − dzz)− ·

p,

∇
σzz =

{
(drr − dzz)(σrr − σzz)+ 4drzσrz

4q sinφ
+

·
q

2q

}
(σzz − σrr)− q

sin φ
(dzz − drr)− ·

p,

∇
σ rz =

{
(drr − dzz)(σrr − σzz)+ 4drzσrz

2q sinφ
+

·
q

q

}
σrx − 2q

sin φ
drz. (5.19)

6. Compression of a circular cylinder

This is the axially symmetric analogue of pure shear. A circular cylinder of granular material is
compressed by axial forces, while confined by a radial pressure. In soil mechanics literature,
the experiment is often referred to as the triaxial test. The deformation is described by the
homogeneous velocity field
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vr = 1

2
kr, vz = −kz (6.1)

where k is constant. This satisfies the condition (5.10) for the motion to be isochoric. The
double-shearing relation (5.11) reduces to

−3

2
k sin 2ψ̃ + 2

dψ̃

dt
sinφ = 0. (6.2)

6.1. TIME-INDEPENDENT STRESS SOLUTION

Together with the equilibrium equations, (6.2) has the time-independent stress solution

σrr = −R, σθθ = −R, σzz = −Z, σrz = 0, (6.3)

which corresponds to

ψ̃ = 0, p = 1

2
(R + Z), q = 1

2
(Z − R). (6.4)

In order to satisfy the Coulomb-Mohr yield condition we have, in the time-independent
solution

Z = R(1 + sinφ)+ 2c cosφ

1 − sinφ
. (6.5)

Exactly as in Section 4, it follows that this solution is linearly unstable to perturbations of the
form ψ̃ = εψ̃1.

6.2. TIME-DEPENDENT STRESS SOLUTION

Also as in Section 4.2, (6.2) can be integrated to give the time-dependent exact solution

tan ψ̃ = tan ψ̃0 exp

(
3

2
kt

)
cosec φ (6.6)

and all the conclusions of Section 4 apply in this case also, provided only that e is replaced
by 3k/4. In the time-dependent solution, the axial compressive stress required to produce the
deformation is

Z(t) = 2(R sinφ + c)

1 − sinφ cos 2ψ̃
= 2(R sin φ + c)(1 + tan2 ψ̃)

(1 − sinφ)+ (1 + sin φ) tan2 ψ̃
. (6.7)

6.3. CONICAL SHEAR-BAND FORMATION

In Section 4.1 it was shown that instability of the uniform pure shear deformation may take
the form of strain localization in shear bands inclined at angles ±( 1

4π+ 1
2φ) to the x-axis. The

axisymmetric analogue in the triaxial test is strain localization in the neighbourhood of conical
surfaces in the material. For the Haar-von Karman regime the analysis exactly parallels that of
Section 3. We look for an superposed field confined to a narrow band in the neighbourhood of
a conical surface with its apex on the z-axis and unit normal ñ = (̃n1, ñ2) = (

cos δ̃, sin δ̃
)
. The

underlying velocity field is the uniform field (6.1). It follows that if the velocity is continuous
across the conical band, but velocity gradients may be discontinuous, the superposed velocity
gradients are of the form (analogous to (3.14))
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∂vr

∂r

∂vr

∂z

∂vz

∂r

∂vz

∂z

 =
[
g̃1ñ1 g̃1ñ2

g̃2ñ1 g̃2ñ2

]
, (6.8)

where (g̃1, g̃2) is an arbitrary vector. The condition for the deformation to be isochoric is
g̃1ñ1 + g̃2ñ2 =0 (the superposed deformation-rate component dθθ is zero) and that for contin-
uing equilibrium across the band is ∣∣∣ ·

σ rr

∣∣∣ ∣∣∣ ·
σ rz

∣∣∣∣∣∣ ·
σ rz

∣∣∣ ∣∣∣ ·
σ zz

∣∣∣
 [

ñ1

ñ2

]
=

[
0
0

]
(6.9)

and hence ∣∣∣∇
σ rr + 2σrzωrz

∣∣∣ ∣∣∣∇
σ rz − (σrr − σzz)ωrz

∣∣∣∣∣∣∇
σ rz − (σrr − σzz)ωrz

∣∣∣ ∣∣∣∇
σ zz − 2σrzωrz

∣∣∣
 [

ñ1

ñ2

]
=

[
0
0

]
. (6.10)

From this it follows, as in the argument that leads to (3.21), that

1

2
(
∇
σ rr − ∇

σzz)+ 2σrzωrz − (̃n2
1 − ñ2

2)
·
p = 0,

∇
σ rz − (σrr − σzz)ωrz} − 2̃n1ñ2

·
p = 0. (6.11)

Then, exactly as in Section 3, we find that non-trivial solutions for g̃1,g̃2 and
·
q are admitted

only if

sinφ − (̃n2
1 − ñ2

2) cos 2ψ̃ − 2̃n1ñ2 sin 2ψ̃ = 0, (6.12)

which implies that

δ̃ = ψ̃ ± (
1

4
π − 1

2
φ). (6.13)

However, in the steady stress solution, ψ̃ = 0, and so in this case

δ̃ = ±(1

4
π − 1

2
φ). (6.14)

Hence there exists the possibility of the formation of either upright or inverted conical
shear bands of vertex semi-angle 1

4π − 1
2φ. These conical surfaces coincide with the surfaces

on which the critical stress stress is mobilized.
Strain localization in a circular cylindrical body under compression need not necessarily

occur in an axially symmetric manner, and there is also a possibility of the formation of plane
shear bands.

7. Conclusion

It has been shown that the the non-dilatant double-shearing theory of mechanics of granular
materials admits steady stress solutions for the plane strain deformations of simple shear and
pure shear, and for compression of a circular cylinder, but that these solutions are all linearly
unstable. The theory also yields time-dependent exact solutions for these problems in which
the deformation takes place under decreasing load, which also indicates instability. The theory
has also been applied to an analysis of strain localization in these same deformations. This
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analysis gives predictions of shear band formation that are in broad agreement with observed
behaviour in real dry free-flowing granular materials. The inclusion of dilatant and elastic
response may be expected to moderate and refine these predictions.
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